МОДЕЛИРОВАНИЕ СРЕДСТВАМИ ЯЗЫКА ПРОГРАММИРОВАНИЯ КАК ТЕХНОЛОГИЯ СИСТЕМНО-ДЕЯТЕЛЬНОСТНОГО ПОДХОДА В ОБУЧЕНИИ

КЛЮЧЕВЫЕ СЛОВА: системно-деятельностный подход в обучении; компетенции; системно-информационная концепция; информатика; программирование; моделирование; исследовательская деятельность.

АННОТАЦИЯ. Предлагается концепция реализации системно-деятельностного подхода в обучении информатике при интеграции тем «Программирование» и «Моделирование». Основной идеей изучения технологии программирования и моделирования базируется на формализованном подходе к моделированию ситуационной задачи и отборе необходимого инструментария программирования.

N. V. Makarova, Y. N. Nilova

MODELING BY MEANS OF PROGRAMMING LANGUAGE AS A TECHNOLOGY OF SYSTEM-ACTIVITY APPROACH IN TEACHING

KEY WORDS: system-activity approach in teaching; competences; system-information concept; computer science; programming; modeling; research activity.

ABSTRACT. The concept of implementation of a system-activity approach in teaching computer science in the integration of topics: "programming" and "modeling" is offered. The main idea of learning methodology of programming technology and modeling is based on formalized approach to the modeling situation task and choice of necessary programming tools.

Новое время предъявляет к школе требования, выраженные в Федеральном государственном образовательном стандарте (ФГОС) среднего (полного) общего образования, утвержденные Министерством образования и науки Российской Федерации от 17 мая 2012 г. № 413. Методологической основой нового ФГОС является системно-деятельностный подход к обучению. Анализ списка требований ФГОС к предметным результатам освоения базового и углубленного курсов информатики позволяет сделать вывод о возрастающей роли навыков алгоритмизации и программирования в образовании современного школьника, так как они составляют для базового курса 42%, для углубленного — 35% от общего количества требований к результатам освоения.

Системно-деятельностный подход основывается на теоретических положениях концепции Л. С. Выготского, А. Н. Леонтьева, Д. Б. Эльконина, П. Я. Гальперина, раскрывающих основные психологические закономерности процесса обучения и воспитания, структуру образовательной деятельности учащихся с учетом общей закономерностей развития детей, и представляет собой единство системного и деятельностного подходов. Системный подход в педагогике является общеученчным и основан на идеи рассмотрения объекта познания как системы. Деятельностный подход исходит из положения о том, что психологические способности человека есть результат преобразования внешней предметной деятельности в качественно новую, активную деятельность, путем последовательных преобразований, т. е. развитие учащихся определяется характером организации их деятельности, в первую очередь, учебной.

Таким образом, в условиях возрастающей роли раздела «Алгоритмизация и программирование» в курсе школьной информатики и требований обеспечения «...формирования готовности обучающихся к самостоятельному и непрерывному образованию; активной учебно-познавательной деятельности обучающихся...» [4. С. 3] в соответствии с принципами системно-деятельностного подхода становится актуальной проблема разработки методической системы обучения программированию в школе.

Из года в год школьники с разным успехом и разным интересом записывают в тетради базовые алгоритмические конструкции, типы данных, синтаксис операторов и постигают приемы программирования.

Безусловно, программирование — вид деятельности, который, как никакой другой, позволяет развивать и совершенствовать мышление, учить планировать действия, находить закономерности.

© Макарова Н. В., Нилова Ю. Н., 2012
Если изучение программирования наделить мировоззренческой концепцией, например рассматривать его как инструмент познания мира посредством моделирования, то программирование становится тем видом деятельности, который обеспечивает «...формирование научного типа мышления», «...способность использования метапредметных понятий в познавательной и социальной практике», «...формированность мотивации к обучению и целенаправленной познавательной деятельности...» [4. С. 4] и ответит на вопрос «Для чего изучается программирование?». Если изучение программирования наделить системой структурированных деятельностей, то цели обучения начинают формулироваться в виде совокупности компетенций, и такая методика обучения позволит реализовать системно-деятельностный подход.

Каково при этом будет место классического, наиболее разработанного подхода в обучении, который может быть назван «знания — умения — навыки» в новых условиях при обучении программированию в школе? Принцип передачи готовой информации не должен противоречить деятельностному подходу, он должен сохранить свое значение, так как обучать деятельностно без знаний и умений невозможно, но при этом он должен быть обогащен главной задачей — научить школьника пользоваться знаниями для решения различных проблем. Ведь для того чтобы научить выражать мысли в творческих заданиях, необходимо сначала научить правильно держать ручку, выводить буквы и грамотно писать. Для того чтобы построить табурет, необходимо научить пользоваться молотком, уровнем, т. е. сначала овладеть инструментами. Только сумма знаний, умений и личностных качеств позволяет человеку совершать различные действия.

Методика преподавания программирования на основе моделирования ситуационных задач позволяет реализовать принципы системно-деятельностного подхода в обучении.

Вопросы теории моделирования рассмотрены в работах Б. А. Ганина, А. В. Горюко, А. Н. Лебедева, В. А. Штойфа, И. А. Полегова, А. А. Семарского, И. Т. Фролова, Р. Шеннина. Моделирование трактуется учеными как метод научного познания, как процесс исследования деятельности, как способ теоретического мышления. Обучение моделированию как разделу школьной информатики разрабатывалось еще при введении предмета в школе А. Г. Гейном, В. В. Житомирским, Е. В. Линецким, Н. В. Макаровой и др. Методики обучения моделированию позволяли определить понятный аппарат и универсальную схему моделирования. Схема моделирования включает в себя этапы [1; 2; 3]: постановка задачи, разработки модели, компьютерного эксперимента, анализа результатов. На этапе разработки модели создается информационная модель в различных знаковых формах. Создание компьютерной модели требует от исследователя выбора наиболее эффективной компьютерной технологии. Компьютерные модели могут быть созданы:

- в прикладных программных средах, в том числе и специального назначения;
- в средах программирования.

При моделировании в прикладной программной среде выбор приложения зависит от цели моделирования и определяет алгоритмы построения компонентов компьютерной формул ее представления. Каждое приложение предоставляет исследователю готовые инструменты для создания модели, используя навыки работы с которыми, исследователь продумывает последовательность действий (алгоритм) для создания информационной модели. Методика обучения моделированию в базовом курсе информатики и организации исследовательской деятельности на основе решения задач по разработке и построению моделей в прикладных программных средах представлена в учебно-методическом комплекте [1; 2; 3] под редакцией профессора Н. В. Макаровой, в котором разработаны формализованный подход к моделированию в прикладных программных средах.

При моделировании в среде программирования возможно реализовать любую цель моделирования, используя для этого различные средства языка программирования: обработку числовых данных, обработку текстов, графических средств. Последовательность действий, приводящая к созданию модели (алгоритма), должна быть описана командами среды программирования, что требует от исследователя навыков программирования: умение организовать данные в выбранной среде, умение правильно применять языковые конструкции, способность проанализировать полученную последовательность команд. Методики обучения программированию в школе рассмотрены в работах и представлены в учебниках В. Г. Лебедева, А. П. Ершова, А. А. Кузнеца, А. Г. Куширенко, Н. В. Макаровой, Ю. Ф. Титовой и др.

Концепцией предлагаемой методической системы изучения программирования на основе моделирования ситуационных задач в школе является освоение инструментария программирования с целью исследования объекта, явления или процесса в виде модели. Такая методика опирается...
на принципы системно-информационного подхода, использует разработанный понятный аппарат, универсальную схему моделирования и включает следующие этапы изучения:

1. Знакомство с инструментарием программирования.
 1.1. Теоретический материал.
 1.2. Набор заданий.

2. Освоение инструментария программирования.
 2.1. Набор контрольных вопросов для проверки уровня теоретических знаний.
 2.2. Набор заданий для формирования умений и приобретения навыков использования изучаемого инструментария программирования.

3. Пример решения задачи по моделированию с использованием освоенного инструментария программирования.
 3.1. Постановка задачи.
 3.2. Разработка модели.
 3.2.1. Информационная модель для среды программирования.
 3.2.2. Моделирование последовательности действий:
 a) алгоритм;
 b) программа.
 3.2.3. Отладка программы.

3.3. Компьютерный эксперимент
 3.3.1. Тестирование.
 3.3.2. Эксперименты в модели.

4. Набор задач по моделированию.

5. Набор проектов на обобщение знаний.

Этапы 1, 2 позволяют использовать богатый опыт подхода "знания — умения — навыки", основанный на обучении как передаче опыта и усвоении, способности воспроизвести предложенные игровые знания, и расширяются действиями, предписывающими самостоятельные исследования, например: освоить технологию работы в редакторе среды программирования, определить роль скобок в записи арифметического выражения на языке программирования; установить соответствие типа переменной и типа данных; установить допустимые действия над данными определенного типа; использовать справочную систему среды программирования, рассмотреть синтаксис и семантику операторов, информацию о которых представлена упрощенно или которые не изучаются, но расширяют возможности инструментария программирования; определить содержание сообщения среды программирования об ошибке.

Система теоретического материала и заданий на освоение инструментария программирования обеспечивает дифференцированный подход к обучению и гибкость при реализации либо программ по информатике различного уровня, либо электрического курса по программированию. На этой первой стадии учебной деятельности осуществляется освоение учащимися отдельных учебных действий, "умений, специфических для данной предметной области" [4. C. 4].

Этапы 3, 4, 5 опираются на системную-деятельностный подход в обучении и обеспечивают выполнение требований к результатам освоения обучающимися основной образовательной программы: предметным, метапредметным и личностным. Эти этапы представляют собой вторую стадию учебной деятельности и предполагают: объединение учебных действий в целостный акт учебной деятельности, становление смыслообразующей функции познавательного мотива; "систему учебной деятельности, обобщенность, устойчивость и избирательность познавательных интересов, доминирование познавательных интересов в иерархии мотивационной системы, принятие познавательного мотива функций побуждения и смыслообразования" (В. В. Давыдов).

Методическая система обучения программированию на основе моделирования ситуационных задач базируется на идеях системного анализа и возможностях среды программирования. Используются понятия базового курса информатики: информация, объект, модель, информационная модель, система объектов, информационная модель системы и формализованный подход к проведению моделирования. Этот подход заключается в выполнении последовательных этапов, которые должен пройти исследователь-ученик при решении проблемы: постановка задачи → разработка модели → компьютерный эксперимент → анализ результатов моделирования — и представляет собой формализованную схему моделирования как универсального метода познания, обеспечивающую "формирование научного типа мышления, владение научной терминологией, ключевыми понятиями, методами и приемами" [4. C. 4].

Разработан комплект задач для моделирования. Задачи предлагаются в неформальном описании. Исходя из такого описания определяются цели моделирования, производится формализация задачи. При формировании в соответствии с поставленной целью выделяются параметры, которые известны (исходные данные) и которые следует найти (результаты). Формализация выполняется в виде поиска ответов на вопросы, уточняющие общее описание задачи: что моделируется, какие параметры моделируются, какие параметры известны и какие надо определить, возможный диапазон значений параметров, описание отно-
шений и связей (для систем), каковы правила (формулы) преобразования исходных данных в результат. Этап постановки задачи развивает умения и навыки осознания учебной задачи, осмысления учебного материала, постановки целей, выделения главного, анализа и синтеза, абстрагирования и конкретизации, обобщения.

Этап разработки модели включает построение информационных моделей в различных знаковых формах. Обязательной формой информационной модели является таблица, в которой на основе результатов формализации задачи описываются параметры (название, значение) моделируемых объектов (систем объектов) и установленные им в соответствие параметры для среды программирования (имена переменных/констант или значения, типы переменных/констант).

<table>
<thead>
<tr>
<th>Объект моделирования</th>
<th>Параметры</th>
</tr>
</thead>
<tbody>
<tr>
<td>реального объекта</td>
<td>для среды программирования</td>
</tr>
<tr>
<td>название</td>
<td>значение</td>
</tr>
</tbody>
</table>

Комплекс задач по моделированию в среде программирования опирается на знания из разных предметных областей, требуя математического описания закономерностей.

Разработка компьютерной модели обязательно предполагает моделирование последовательности действий в виде алгоритма и программы. Построение алгоритма предполагает как знакомство с типовыми алгоритмами, так и творческий, креативный подход к определению последовательности действий. Разработка программы — «последовательности операторов, способных сделать все что угодно и от того одно время и податливым, и опасным» (Э. Дейкстра) — требует от учащегося способности применить на практике умение работать с инструментарием программирования, освоения нового инструментария и технологических приемов работы в среде программирования, способности оценить результаты.

Работа над программой — это деятельность, которая опирается на определенные умения, навыки, и в то же время это деятельность, в ходе которой формируются новые умения, навыки. Так сумма умений и навыков проходит через деятельность и становится компетентностью как характеристической личности.

Этап компьютерного эксперимента требует проведения тестирования компьютерной модели-программы и собственно эксперимента. Тестирование — это процесс проверки правильности построенной модели, соответствия модели реальному объекту и цели моделирования. Ученик должен продумать набор исходных данных, для которых результат известен или предварительно определен другими способами. Если в результате тестирования выявляется несоответствие модели и реального объекта, то следует скорректировать модель на любом из предыдущих этапов моделирования, если выявляется соответствие модели и реального объекта, то можно переходить к компьютерному эксперименту, удовлетворяющему цели моделирования, т. е. к проведению исследования.

Такие интеллектуальные умения, как абстрагирование, способность прогнозировать, формируются на этапе тестирования программы.

Получив в итоге программирования готовую компьютерную модель, ученик может проводить эксперимент. Компьютерный эксперимент заключается в воздействии на модель, варьировании ее параметров инструментами среды программирования, а потому приближается по способам действия к натурному эксперименту. Формирование навыков оценки результата, выявления закономерностей, способности выдвинуть гипотезу является основой развития умения оценки и осмысления результатов деятельности.

Задачи по моделированию отобраны по принципу уровня обобщения знаний:
- набор задач по моделированию, использующих изучаемый инструментарий программирования;
- набор проектов, общих для полученных навыков и умения по программированию.

Дифференцированные по уровню обобщения задачи моделирования предполагают и различные формы работы учащиков: индивидуальная работа и работа в группе (команда). Индивидуальная работа формирует умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность [4]. Работа в группе формирует умение устанавливать рабочие отношения, эффективно сотрудничать, способствует возникновению рефлексии.

Для предлагаемой методологической системы преподавания программирования на основе моделирования ситуационных задач разработано учебно-методическое пособие, содержание которого включает следующие разделы:
1. Введение. Моделирование в среде программирования.
2. Моделирование линейных процессов.
 2.1. Моделирование графических объектов.
 2.2. Моделирование вычислительных процессов.
3. Моделирование циклических процессов.
 3.2. Моделирование циклических процессов в графике.
 3.3. Моделирование вычислительных циклических процессов.
 3.4. Моделирование вложенных циклических процессов.
 3.5 Моделирование графического представления информации.
4. Моделирование ветвящихся процессов.
5. Моделирование циклических процессов с неизвестным числом повторений.
6. Моделирование процессов обработки символьных данных.
7. Структурированные типы данных.
 7.1. Массивы данных. Основные понятия.
 7.2. Одномерные массивы.
 7.3. Двумерные массивы.
 7.4. Файловый тип данных.
8. Принципы структурного программирования.
 8.1. Общие сведения о структурном программировании.
 8.2. Процедуры и функции.
 Отбор содержания определен принципами структурного программирования с учетом требований возрастных, психологических особенностей учащихся по уровню и форме восприятия информации.

Учебно-методическое пособие построено на основе системно-информационного подхода, разработанного профессором Н. В. Макаровой. Пособие проходит апробацию на базе ГБОУ СОШ № 501 с углубленным изучением предмета информатики и ИКТ Кировского района Санкт-Петербурга и ГБОУ лицея № 393 Кировского района Санкт-Петербурга.

Опыт учителей, участвующих в апробации методики, показывает возможность применения различных организационных форм урока:

- общеклассное занятие при изучении инструментария программирования;
- индивидуальная форма работы при выполнении заданий на освоение инструментария программирования, решение задач по моделированию;
- групповая форма работы при выполнении проекта.

Методика включает приемы активации обучения:
- эмпирический метод освоения некоторых инструментов программирования, предполагающий «экспериментальное нащупывание»;
- задания с «недостаточной информацией», требующие дополнительного самостоятельного изучения;
- задания, требующие креативного мышления.

Использование методической системы «Моделирование в среде программирования» позволяет активизировать творческую и познавательную деятельность учащихся, повысить их интерес к учебной деятельности и заинтересованность в ее конечном результате как в рамках обучения программированию, так и в рамках межпредметных связей.

Этапы изучения предполагают освоение знаний в области инструментария программирования, приобретение навыков и умений использования алгоритмов обработки информации с использованием инструментария программирования и завершаются выполнением деятельности при решении исследовательских задач моделирования, требующих владения знаниями из различных предметных областей, затрагивающих сферы социальных и межличностных отношений.

Понимание роли моделирования как метода познания мира, а программирования как инструмента моделирования обеспечивает решение задачи «сформированности мировоззрения, соответствующего современному уровню развития науки...» [4. С. 5].

Л И Т Е Р А Т У Р А

Статью рекомендует д-р пед. наук, проф. А. П. Усольцев